HoriaScutaru
arXiv:quant-ph/99080v1 31 Aug 1999DepartmentofTheoreticalPhysics,InstituteofAtomicPhysics,POBOXMG-6,R-76900Bucharest-Magurele,RomaniaE-mail:scutaru@theor1.theory.nipne.ro
PACSnumbers:03.65.Bz;03.65.Fd;42.50.Dv.;.70.+c
Abstract.Inthepresentpaperweshallproposeanewmeasureofthenonclassicaldistance[1].Theproposedmodificationisbasedonthefollowingconsiderations.Ifρ1andρ2aredensityoperators,andF(ρ1,ρ2)isthecorrespondingfidelity,thenfromtheinequalities[2]2
2(1−
itisevidentthatthequantity
φ(ρ)=supF(ρcl,ρ)
ρcl
canbeusedinthesameextentasameasureofthedistanceofthestateρtothesetofclassicalstatesρclastheHillerymeasureδ(ρ)=supρcl||ρ1−ρ2||1[1].φ(ρcl)=1foranyclassicalstateandφ(Γ(ρ))≥φ(ρ)ifthemapΓistheGaussiannoisemap[3,4].Shorttitle:AnewmeasureofnonclassicaldistanceFebruary1,2008
21.
Introduction
In[1],Hillerygaveadefinitionofthenonclassicaldistanceofradiationintermsofthetracenormas
δ(ρ)=inf||ρ−ρcl||,
ρcl
(1)
whereρisthedensitymatrixofthenonclassicalradiationandρclisthatofanarbitraryclassicalfield,while||A||1isthetracenormoftheoperatorA.TheHillerynoncassicaldistancehasthefollowingproperties:(i)δ(V(u)ρV(u)†)=δ(ρ);(ii)0≤δ(ρ)≤2;
(iii)δ(θρ1+(1−θ)ρ2)≤θδ(ρ1)+(1−θ)δ(ρ2).
wheretheunitaryoperatorsV(u)arethewellknownWeyloperatorsgivingaprojectiveunitaryrepresentationofthevectorgroupR2n(seethenextsection).Thismeasureseemstobequiteuniversal.Unfortunately,itisnoteasytousethismeasureinactualcalculations.Inpractice,onecanonlyprovidetheupperboundandlowerboundofthemeasure.
Itispossibletodefinethedistancebetweentwoquantumstatesdescribedbydensityoperatorsinmanyways[5,6,7,8].Ifthedistanceissmallthesetwodensityoperatorscanbeconsideredverysimilartoeachother.Ontheotherhandalargedistancemeansverydifferentdensityoperators.
Another,morephysicalpointofwiewisthatpresentedin[2].Accordingtothispointofview”theonlyphysicalmeansavailablewithwhichtodistinguishtwoquantumstatesisthatspecifiedbythegeneralnotionofquantummechanicalmeasurement”.Insteadofametricalpointofviewastatisticalpointofviewistakenintoaccount.Ameasurementbeingnecessarilyindeterministicandstatisticthemorephysicalmeasuresofdistancebetweentwoquantumstatesarethosewhicharebasedonthestatistical-hypothesistestingprocedures.
Inthepresentpaperweshallproposeanewmeasureofthenonclassicaldistance[1].Theproposedmodificationisbasedonthefollowingconsiderations.Ifρ1andρ2aredensityoperators,andF(ρ1,ρ2)isthecorrespondingfidelity,thenfromtheinequalities[2]
22(1−(2)itisevidentthatthequantity
ρcl
φ(ρ)=supF(ρcl,ρ)
(3)
canbeusedinthesameextentasameasureofthedistanceofthestateρtotheset
ofclassicalstatesρclasHillery’smeasureδ(ρ).
Letρ1andρ2betwodensityoperatorswhichdescribetwomixedstates.ThetransitionprobabilityP(ρ1,ρ2)hastosatisfythefollowingnaturalaxioms:(i)P(ρ1,ρ2)≤1andP(ρ1,ρ2)=1ifandonlyifρ1=ρ2;(ii)P(ρ1,ρ2)=P(ρ2,ρ1);
3
(iii)Ifρ1isapurestate,ρ1=|ψ1><ψ1P(ρ1,ρ2)=<ψ1|ρ2|ψ1>;
|then
(iv)P(ρ1,ρ2)isinvariantunderunitarytransformationsonthestatespace;(v)P(ρ1|A,ρ2|A)≥P(ρ1,ρ2)foranycompletesubalgebraofobservablesA;(vi)P(ρ1⊗σ1,ρ2⊗σ2)=P(ρ1,ρ2)P(σ1,σ2).
(vii)P(µ1ρ1+µ2ρ2,σ)≥µ1P(ρ1,σ)+µ2P(ρ2,σ)when0≤µ1,µ2≤1,µ1+µ2=1.
Uhlmann’stransitionprobabilityformixedstates[9,10,11,12]
P(ρ1,ρ2)=Tr(√ρ1)
1/2
2(4)
satisfiesproperties1–7.ThefidelityisdefinedbyF(ρ1,ρ2)=P(ρ1,ρ2).Adetailed
analysisforthestructureofthetransitionprobabilitywashamperedbythefactorscontainingsquareroots.Duetotechnicaldifficultiesinthecomputationoffidelities,fewconcreteexamplesofanalyticcalculationsareknown.Thefirstresultsinaninfinite-dimensionalHilbertspacewererecentlyobtainedbyTwamley[13]forthefidelityoftwothermalsqueezedstatesandbyParaoanuandScutaru[14]forthecaseoftwodisplacedthermalstates.In[15]Scutaruhasdevelopedanothercalculationmethodwhichallowedgettingtheresultforthecaseoftwodisplacedthermalsqueezedstatesinacoordinate-independentform.AgeneralformulaforthefidelityofanytwomixedGaussianstates(i.e.multimodedisplacedthermalstates[16,17,18,19,20,21],fromwhichthepreviousresultscanbeobtainedasparticularcases,hasbeenobtainedrecently[22].
Anothermodificationisbasedonthefollowingconsiderations[23].Ifρ1andρ2aredensityoperators,thenitiseasytoestablish[23]theinequalities
2(1−Tr
√ρ12)≤||ρ1−ρ2||1≤2[1−(Tr√
ρ2)2]ρcl
√
ρ1
√
4
continuousfamilyofunitaryoperators{V(u),u∈E}onHwhichsatisfytheWeylrelations[19,21]:
V(u)V(v)=exp
i
5
(i)CF0(O)=TrO;
†(ii)CFuV(v)OV(v)=CFu[Oexpiσ(v,u)];(iii)CFu(O1O2)=
1
2σ(v,u)dv;
(iv)CFSu(O)=CFu(U(S)OU(S)†).
Themultimodethermalsqueezedstatesaredefinedbythedensityoperatorsρ
whosecharacteristicfunctionsareGaussians[15,19,21]
1
CFu(ρ)=exp−
4
uTA2−(A2−iJ)(A1+A2)−1(A2+iJ)u.
2
−1
6
Whenρ1=ρ2wehave
CFu(ρ)=(detA)
2
−
1
4
u
T
A−JA−1J
>A.HenceforanyGaussian
statethecorrelationmatrixAmustsatisfythefollovingrestriction[21]
2
A≤−JA−1J.
3.
TheclassicalGaussianstates
(19)
AmultimodesqueezedthermalstateisaclassicalstatewhenithasaP-representation.TheP-distributiononthephasespacewhichdescribessuchastateisthesymplecticFouriertransformofthenormalorderedcharacteristicfunction
NCFu(ρ)=exp{−
1
det(A−I))−1exp{
1
detGexp{−vTGv}
(23)
(Gisapositivedefinite2n×2nmatrix)andV(u)aretheWeyloperators.Itiseasy
toseethatinthecasewhenρisaquasifreestatewiththecharacteristicfunction
CFu(ρ)=exp{−
uTAu
7
thecharacteristicfunctionofthestateΓ(ρ)isgivenby
CFu(Γ(ρ))=exp{−
uT(A−JG−1J)u
TrA=d(m2+
1
m
.Thenitisevidentthat
m
)=2
TrA
detA
(27)
Evidently,tothecorrelationmatrixΓ(A)therecorrespondsanewsqueezingparameterΓ(m)givenbytheanalogousequationwithAreplacedwithΓ(A).Fromtheformula(26)itfollowsthat
−1T−1T
detΓ(A)=det(g−1I+d(OG)SSOG)
(28)
and
TrΓ(A)=TrG−1+TrA
Fromtheformula(28)weobtainthat
detΓ(A)=detG
−1
(29)
+
TrG−1TrA
Γ(m)2
=
TrG−1+TrA
+detA2
(31)
Withtheaboveparametrizationwehave
g+dm22
Γ(m)=d
g+
(1
g+
d
8and
g
−1
=
d[(m2+
1
(m2−
1
d
)2
m2−2
1
Γ(d)
1+(
m2−
1
2Γ(d)
m=Γ(m),¸siΓ(d=1)=2¯n+1andm=exp(r).
Thenthefirsttwoequations(A6)fromtheAppendixAofthepaper[4]become:
m2−
and
1
4(m2+
1
4
(Γ(m)2+
1
1
Γ(m)2
)
(36)
2¯n,
′′
1+gm2
m2
−
m2
m2)
(1+gm2)(1+
g++
1
g
g
+m)+((1
21
m2)
11
m2
1
g
+
1
g
+
d
(40)
4
whereA=2ΣandΣisthecorrelationmatrixofthestate.Wehaveforanytwodensityoperatorsρ1andρ2:
ivTJu−nuCFu(ρ1ρ2)=(2π)CFv+−v(ρ2)exp{2
uTAu}
9
whereJ=
0−I
√I
.Thisbecomesintheparticularcasewhenρ1=ρ2=0
+v(2
√
−v(2
√
2
}dv(42)
Ifwesupposethat
√
CFu(
thenitfollowsthat
CFu(ρ)=K2(detφ(A))−
1
4
uTφ(A)u}
(43)
8
uT(φ(A)−Jφ(A)−1J)u}
(44)
1
InorderthatthisequalitybevalidforallvaluesofuwemusthaveK=(detφ(A))
I+(JA)−2)
Indeed,wehave
A=STDS
(47)
(48)
withSTJS=J(i.e.Sisasymplecticmatrix)andD≥Iisadiagonalmatrix.ItiswellknownthatifSisasymplecticmatrixthenSTandS−1arealsosymplecticmatrices.Fromthisfactweobtainthat
(JA)−2=−S−1D−2S
Alsowehave
Jφ(A)JA=−S−1D(D+
D2−I)2S
(51)(49)
√
Because(D+D2−I)thedesiredresultfollows.Thefollowingformofthefunctionφ(A)isalsouseful:
−1
φ(A)=−S(D+
ρ1√
10
itfollowsthat
Tr√
ρ2=(2π)−n
√CFu(
ρ2)du()
Itiseasytocomputethisintegral.Theresultis
detφ(A1)detφ(A2)√
ρ2=Tr
)2
(55)
2
M0T
Whenρ2isasqueezedstate(i.e.whenA2=O2O2)itisplaussible
0M−2
tosupposethatthemaximumvalueofthisquantityisobtainedforD1=I,andO1=O2.Inthiscase
χ(ρ)=
1
2
)
(56)
(wherewehavedenotedthedensitymatrixρ2byρ).Itisclearfromthisformulathatthenonclassicityofthestateρisentirelyduetothesqueezing.WhenM=Iwehavenosqueezingandχ(ρ)=1.5.1.
Theone-modecase
Intheone-modecasethegeneralclassicalstateisgivenbyacharacteristicmost2
d1m10T
functionwithA1=O1d1
0
2
d2k−1)
fork=1,2.Ifρ2isalsoaclassicalstatethen
√
ρ2=1supTr
ρ1
(57)
d2m22
0
0
isobtainedforρ1=ρ2.
Whenρ2isasqueezedstate(i.e.whenA2=
ρclass
√
TO2
d2
(58)
φ(d1)φ(d2)
+F(∆θ,m1,m2)
wherewehavedenotedwithFthefollowingfunction
F(∆θ,m1,m2)=
2
2+sin(∆θ)2(m21m2+
1
m2
)2+(
m2
φ(d1)φ(d2)
+F(∆θ,m1,m2)(60)
11
ItisevidentthattheminimumvalueofHisattainedford1=d2andforthosevaluesof∆θ,m1andm2whichminmizethefunctionF.TheminimumvalueofthefunctionFisequalwith2andisattainedeitherfor∆θ=0,andm1=m2orfor∆θ=π
HencewehaveobtainedthatthevalueofFisinbothcasesequalwith(m2+
nonclassicaldistanceforathermalsqueezedstateρ:
χ(ρ)=
2
d
√
d2 1 >d2 m22 ).d2 m2itfollowsthattheminimum √ Γ(m) + Γ(m) Γ(d) (62) whenΓ(d)>Γ(m)2orbyχ(ρ)=1whenΓ(d)<Γ(m)2.TheintuitivefactaccordingtowhichΓ(ρ)isclosertoaclassicalstatethanρisreflectedquantitativelyintheinequality χ(Γ(ρ))≥χ(ρ). Hencewemustprovethat Γ(m) √m orinamoreconvenientform Γ(m)2Γ(d) m2 (63) d+m2 () m2 +1)2 (65) whichbecomes ( m2 d g)1 m2 m2 ++1)2 (66) d Fromthisitfollowsthattheinequalityχ(Γ(ρ))≥χ(ρ)isvalidonlyfor1d− gintroducedbytheGaussian noisemapisinacceptable. 6.Thefidelitydistance ThefidelityF(ρ1,ρ2)fortwodensityoperatorsρ1andρ2isdefinedby √ρ1ρ2F(ρ1,ρ2)=Tr 12 SincethecharacteristicfunctionofaproductofoperatorswhosecharacteristicfunctionsareGaussiansisalsoaGaussianandthecharacteristicfunctionofthesquarerootofaGaussiandensityoperatorisaGaussianwecanfindasimpleformulaforthe √ characteristicfunctionoftheoperatorρ1: √√ ρ1)=CFz(zTOz,(68) 4where L−1=detΦ(A1)−1det 2 Φ(A1)+A2 (69) whereU=(A2−iJ)(Φ(A1)+A2)−1(A2+iJ),and O=Φ(A1)−(Φ(A1)−iJ)[A2+Φ(A1)− (A2−iJ)(Φ(A1)+A2)−1(A2+iJ)]−1(Φ(A1)+iJ). Thenapplyingofthepreceedingsectionwecanobtainthecharacteristictheresult√functionofρ1ρ2 √ ρ1= 1 [LdetΦ(O)]zTΦ(O)z. 4 (70)Fromthisformulaandtheproperty1ofthecharacteristicfunctionweobtain F(ρ1,ρ2)= I+ (JO)−2 . (72) Inordertosimplifytheformulaforthefidelityweobservethat Ai+Aj tijk=Trρiρjρk=det , 2 andthatt123=t231=t312.IfwetakeinthislastidentityΦ(A1)insteadofA1weobtain Φ(A1)+A2 det =det 2A1+A2 Henceweget L= det A1+A2 1− 1 detO+ √ detO− √ det(A1+A2) ,whichgivestheresultof[15] F(ρ2 1,ρ2)= det(A1+A2)+P− √ (d21−1)(d22−1) . Then φ(ρ)=supρF(ρcl,ρ)= . cl (d2 −1)2 +d2[ √ 2m + md ]2−√(d2 −1) WestressthefactthatfornonclassicalGaussianstateswehave 13 (76) (78) (79) 14 GaussianstatesourresultsarecomparablewiththeupperboundsobtainedforHillery’snonclassicaldistance[1],whichisdefinedusingthetracenorm,becausetheseupperboundscontaintheoverlapsbetweenthesqueezedstatesandthecoherentstates.References [1]HilleryM1987Phys.Rev.A35725 HilleryM19Phys.Rev.A392994 [2]FuchsCAandVanDeGraafJ1999IEEETrans.Info.TheoryIT-451216[3]HallMJW1994Phys.Rev.A503295 [4]MusslimaniZH,BraunsteinSL,MannA,andRevzenM1995Phys.Rev.A514967[5]W¨unscheA1995Appl.Phys.B60S119[6]Kn¨ollLandOrlowskiA1995Phys.Rev.A511622 ˙[7]ZyczkowskiKandSlomcz´ynskiW1998J.Phys.A:Math.Gen.319095[8]DodonovVV,Man’koOV,Man’koVIandW¨unscheA1999Phys.Scripta5981[9]BuresD1969Trans.Am.Math.Soc.135,199(1969).[10]UhlmannA1976Rep.Math.Phys.9273[11]JoszaR1994J.Mod.Opt.412314 [12]BartosewiczA1983Bull.Polish.Acad.Sci.31273[13]TwamleyJ1996J.Phys.A:Math.Gen.293723 [14]ParaoanuGh-SandScutaruH1998Phys.Rev.A58869[15]ScutaruH1998J.Phys.A:Math.Gen.313659[16]FearnJandColletMJ1988J.Mod.Opt.35553 [17]ChaturvediS,SanchyaR,SrinivasanVandSimonR1990Phys.Rev.A413969[18]LoCFandSollieR1993Phys.Rev.A47733 [19]HolevoAS1970ProblemyPeredachiInformacii4 HolevoAS1975IEEETrans.Inform.TheoryIF-21533 HolevoAS,SohmaMandHirotaO1999Phys.Rev.A591820HolevoAS1998quant-ph/9809022 HolevoAS1982ProbabilisticandStatisticalAspectsofQuantumTheory,(NorthHolland,Amsterdam),Chap5 [20]Oz-VogtJ,MannAandRevzenM1991J.Mod.Opt.38,2339[21]ScutaruH19Phys.Lett.A141223 ScutaruH1992Phys.Lett.A167326ScutaruH1995Phys.Lett.A20091ScutaruH1998J.Math.Phys.3903 [22]ParaoanuGh-SandScutaruH1999quant-ph/9907068.[23]HolevoAS1972Theor.Math.Phys.13184[24]GlauberRJ1963Phys.Rev.1312766[25]LachsG1965Phys.Rev.138B1012[26]VourdasA1986Phys.Rev.A343466 [27]VourdasAandWernerRM1987Phys.Rev.A365866[28]FearnHandCollettMJ1988J.Mod.Opt.35553[29]LoudonRandShepherdTJ1984Opt.Acta311243[30]VourdasA1988Phys.Rev.A37,30(1988). [31]LeeCT1991inWorkshoponSqueezedStatesandUncertaintyRelations(NASAConference Publications3135),editedbyHanDetal(NASA,WashingtonDC),pp.365-367. [32]BuzekVandKnightPL1991Opt.Commun.81331 [33]HallMJWandO’RourkeMJ1993QuantumOpt.5161[34]MarianPandMarianTA1993Phys.Rev.A474474 MarianPandMarianTA1993Phys.Rev.A474487 [35]DodonovVV,Man’koOV,Man’koVIandRosaL1994Phys.Lett.A185231 DodonovVV,Man’koOVandMan’koVI1994Phys.Rev.A492993 [36]FollandGB19Harmonicanalysisinphasespace(Ann.ofMath.Studies,PrincetonUniversity Press) [37]BalianR,DominicisCandItzyksonC1965Nucl.Phys.67609 [38]EzawaH,MannA,NakamuraKandRevzenM1991Ann.Phys.,NY209216 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- niushuan.com 版权所有 赣ICP备2024042780号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务