周髀算经
---神奇的宇宙与勾股定理
、
数学与软件科学学院
2013级1班 王李俊
前 言
数学是中国古代科学中一门重要的学科,它的历史悠久,成就辉煌。中国数学起源于仰韶文化,距今有五千余年历史,在周公时代,数乃是六艺之一。而勾股定理作为“人类最伟大的十个科学发现之一”,则在很久以前就已被发现,甚至比毕达哥拉斯还早。
天文学是最古老的自然科学学科之一,它的起源可以追溯到人类文化的萌芽时代。远古时候,人们为了指示方向,确定时间和季节,就自然会观察太阳、月亮和星星在天空中的位置,找出它的随时间变化的规律,并在此基础上编制历法,用于生活和农牧业生产活动。早期天文学的内容就其本质来说就是天体测量学。
《周髀算经》是中国流传至今的一部最早的数学著作,同时也是一部天文学著作。在数学上的主要成就是介绍了勾股定理的公式与证明及其在测量上的应用以及怎样引用到天文计算。
中国古代,按所提出的宇宙模式的不同,天文学共有3家学说,“盖天说”是其中之一,而《周髀算经》是“盖天说”的代表。从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。书中还介绍了矩(一种量直角、画矩形的工具)的用途,勾股定理及其在测量上的应用,相似直角三角形对应边成比例定理等数学内容。在《周髀算经》中还有开平方的问题,等差级数的问题,使用了相当繁复的分数算法和开平方法,以及应用于古代的“四分历”计算的相当复杂的分数运算.还有相当繁杂的数字计算和勾股定理的应用。
总的来说,这是一本能很好地帮助了解中国的数学和天文学的发展的书籍。 本文我将从它的历史、基本简介、天文历法和勾股定理介绍整本书籍。
《周髀算经》
历史
《周髀(bì)算经》乃是算经的十书之一。约成书于公元前1世纪,原名《周髀》,它是中国最古老的天文学着作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明引。
基本简介
中国流传至今的一部最早的数学着作,同时也是一部天文学着作。中国古代,按所提出的宇宙模式的不同,天文学共有3家学说,“盖天说”是其中之一,而《周髀算经》是“盖天说”的代表。这派学说主张:天像盖笠,地法复盆(天空如斗笠,大地像翻扣的盆)。
据考证,现传本《周髀算经》大约成书于西汉时期(公元前1世纪)为赵君卿所作,北周时期甄鸾重述,唐代李淳风等注。历代许多数学家都曾为此书作注,其中最著名的是唐李淳风等人所作的注。《周髀算经》还曾传入朝鲜和日本,在那里也有不少翻刻注释本行世。
从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。
书中有矩(一种量直角、画矩形的工具)的用途,勾股定理及其在测量上的应用,相似直角三角形对应边成比例定理等数学内容.
在《周髀算经》中还有开平方的问题,等差级数的问题,使用了相当繁复的分数算法和开平方法,以及应用于古代的“四分历”计算的相当复杂的分数运算.还有相当繁杂的数字计算和勾股定理的应用。 还有有名的圆周率(π):3.1415926······
天文历法
《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后)。也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年。
在这部数学典籍中,就记载了古人怎样用简单的方法计算出太阳到地球的距离。据「周髀算经」,太阳距离的求法是:先在全国各地立一批八尺长的竿子,夏至那天中午,记下各地竿影的长度,得知首都长安的是一尺六寸;距长安正南方一千里的地方,竿影是一尺五寸;距长安正北一千里则是一尺七寸。因此知道南北每隔一千里竿影长度就相差一寸。又在冬至那天测量,长安地方影长一丈三尺五寸。
周髀算经取夏至与冬至间,竿影刚好是六尺的时候来计算。为了说明方便,这里将原书的简单步骤及心算部份改写成大家熟悉的算式,并以图形标示出来。这十万里,就是周髀算经所记载的太阳与地面距离。
当然,现在我们都知道地球和太阳的距离约为一亿四千九百五十万公里。即使将周髀算经中汉制为单位的十万里换算成今天习用的公里,数值仍然悬殊得很。理由很简单,因为汉朝人没有地圆的观念,是以在设计实验之初,就将前提建立在「地是平的」假设上,加之观测设备简陋,而得到并不周延的数据。因此周髀算经的答案是不合事实的。但是我们必须强调,这段求太阳距离的运算过程却是绝对的正确。
严格说来,《周髀算经》是一部天文着作,为讨论天文历法,而叙述一些有关的数学知识,其中重要的题材有勾股定理、比例测量与计算天体方位所不能避免的分数四则运算。例如《周髀算经》认为一年有日而平均有个月,亦即每 19 年应有 7 个闰月,这样每个月的日数应该是但月亮每日所行平均度数为度(一周以度计算,这点有别于西方数学所采用的360 度),要求 12 个月以后月亮所在的方位。那么其问题便在于计算将其馀数再乘以,便知所求方位为。 通过算筹,中国人很早就掌握了复杂的计算。比起同时期的西方数学(例如以欧几里得的《几何原本》所记载的分数性质来看),古代中国数学的定量工作,无疑是遥遥领前的。
勾股定理
首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二)而勾股定理的证明呢,就在《周髀算经》上卷一 ——昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”
《周髀算经》证明勾股定理,如右图:
周公对古代伏羲(庖牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。“数之法出
于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络——数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形*圆周率/4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。“故折矩①,以为勾广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。“②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。“两矩共长③二十有五,是谓积矩。”:此为验算——勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。 矩,又称曲尺 如右图:
注意:① 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。 ② “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、李继闵、曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。
③ 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者, 句股各自乘之实。共长者, 并实之数。
由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。其实不然,摘录赵爽注释《周髀算经》时所做的《勾股圆方图》——“句股各自乘, 并之为弦实, 开方除之即弦。案: 弦图又可以句股相乘为朱实二, 倍之为朱实四, 以句股之差自相乘为中黄实, 加差实亦成弦实。”
赵爽弦图,如右图:
注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。 详细分析请参阅 曲安京《商高、赵爽与刘徽关于勾股定理的证明》。
周髀算经的勾股定理的论证非常直观而且完整。初读此书,我被它的思维深深震撼了。本书是中国历史上最早的一本算术类经书。周就是圆,髀就是股。里面记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即\"勾三股四弦五\",亦被称作商高定理。该书采用最简便可行的方法确定天文历法,揭示日月星辰的运行规律,囊括四季更替,气候变化,包涵南北有极,昼夜相推的道理,给后来者生活作息提供有力的保障。自此以后历代数学家无不以《周髀算经》为参考,在此基础上不断创新和发展。《周髀算经》体现中国人民勤劳和智慧,可以称得上是世界古代科学技术的一座不朽丰碑。
参考文献
万方数据期刊论文《周髀算经》的自洽性分析 - 上海交通大学学报(哲学社会科学版) - 200513 ( 2 )
万方数据期刊论文《周髀算经》与阳城 - 中国科技史杂志 - 200930 ( 1 ) 万方数据期刊论文\"倚盖\"说与《周髀算经》宇宙模型的再思考 - 中国科技史杂志 - 200829 ( 4 )
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- niushuan.com 版权所有 赣ICP备2024042780号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务