您好,欢迎来到钮旅网。
搜索
您的当前位置:首页【CN110034746A】一种基于最大协同熵卡尔曼滤波方法【专利】

【CN110034746A】一种基于最大协同熵卡尔曼滤波方法【专利】

来源:钮旅网
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110034746 A(43)申请公布日 2019.07.19

(21)申请号 201910259574.3(22)申请日 2019.04.02

(71)申请人 汕头大学

地址 515000 广东省汕头市大学路243号(72)发明人 周腾 张展昌 蔡玲如 (74)专利代理机构 广州三环专利商标代理有限

公司 44202

代理人 周增元 曹江(51)Int.Cl.

H03H 17/02(2006.01)

权利要求书2页 说明书5页 附图1页

()发明名称

一种基于最大协同熵卡尔曼滤波方法(57)摘要

本发明实施例公开了一种基于最大协同熵卡尔曼滤波方法,对脉冲式非高斯噪声具有很强的鲁棒性,并保持了传统卡尔曼滤波算法的状态均值传播过程,而且保留了预测误差协方差的矩阵的传播过程。因此,这种新的滤波器也具有递归结构,适用于在线更新。

CN 110034746 ACN 110034746 A

权 利 要 求 书

1/2页

1.一种基于最大协同熵卡尔曼滤波方法,其特征在于,包括以下步骤:S1:设定核带宽σ和一个小的正数η,设定初始状态估计0),t=1;

S2:使用以下公式获得

和P(t|t-1),用Cholesky分解法得到Rp(t|t-1),

和初始协方差矩阵P(0|

P(t|t-1)=A(t-1)P(t-1|t-1)AT(t-1)+Q其中,A(k-1)是系统的控制参数,

是上一个状态最优的结果,P(k|k-1)是

统过程的协方差;

S3:使j=1,计;

S4:使用以下公式计算后验估计

其中

表示在第j次定点迭代中的状态估为上一个状态预测的结果,

对应的协方差,Q是系

其中:

其中,表示第t时刻的卡尔曼增益,H表示测量矩阵,z表示测量值,表示测量噪声

的协方差,对E[β(t)βT(t)]进行Cholesky分解(平方根法),得到B,

ξ(t)表示测量噪声,符号E表示期望算子;diag()表示提取对角

元素,Gσ表示高斯核,di(t)是D(t)的第i个元素,wi(t)是W(t)的第i行元素,其中

S5:当以下公式成立,则使否则,令j+1→j,重复S4,

2

CN 110034746 A

权 利 要 求 书

2/2页

S6:使用以下公式更新后验估计协方差矩阵,令t+1→t,重复S2,

3

CN 110034746 A

说 明 书

一种基于最大协同熵卡尔曼滤波方法

1/5页

技术领域

[0001]本发明涉及智能控制领域,尤其涉及一种基于最大协同熵卡尔曼滤波方法。背景技术

[0002]传统的卡尔曼滤波器是基于最小均方误差,其在高斯噪声下有很好的表现。但是,很多实际的工程场景并不能满足高斯噪声的假设,这导致了传统卡尔曼滤波器在非高斯噪声干扰特别是脉冲式非高斯噪声干扰的应用中性能恶化,其导致的主要原因为传统卡尔曼滤波算法只能噪声是高斯分布的情况下给出可靠的估计,当把传统卡尔曼滤波器应用于非高斯情况时,它们的性能可能会变差,特别是当系统受到脉冲噪声的干扰时。脉冲噪声具有重尾分布(例如一些混合高斯分布),这在许多真实的自动控制和目标跟踪场景中很常见。这个问题的主要原因是传统卡尔曼滤波器是基于最小均方误差标准,该标准对大异常值非常敏感,导致传统卡尔曼滤波器在非高斯噪声环境中的鲁棒性恶化。发明内容

[0003]本发明实施例所要解决的技术问题在于,提供一种基于最大协同熵卡尔曼滤波方法。可对脉冲式非高斯噪声具有很强的鲁棒性,并保持了传统卡尔曼滤波算法的状态均值传播过程,而且保留了预测误差协方差的矩阵的传播过程。[0004]为了解决上述技术问题,本发明实施例提供了一种基于最大协同熵卡尔曼滤波方法,包括以下步骤:

[0005]

S1:设定核带宽σ和一个小的正数η,设定初始状态估计S2:使用以下公式获得

和初始协方差矩阵P

(0|0),t=1;

[0006][0007][0008][0009]

和P(t|t-1),用Cholesky分解法得到Bp(t|t-1),

P(t|t-1)=A(t-1)P(t-1|t-1)AT(t-1)+Q其中,A(k-1)是系统的控制参数,

是上一个状态最优的结果,P(k|k-1)是

为上一个状态预测的结果,

对应的协方差,Q是系

统过程的协方差;

[0010]

S3:使j=1,其中表示在第j次定点迭代中的状态

估计;

[0011][0012][0013]

S4:使用以下公式计算后验估计

其中:

4

CN 110034746 A

说 明 书

2/5页

[0014]

[0015]其中,表示第t时刻的卡尔曼增益,H表示测量矩阵,z表示测量值,表示测

量噪声的协方差,对E[β(t)βT(t)]进行Cholesky分解(平方根法),得到B,

ξ(t)表示测量噪声,符号E表示期望算子;diag()表示提取对

角元素,Gσ表示高斯核。di(t)是D(t)的第i个元素,wi(t)是W(t)的第i行元素,其中

[0016]S5:当以下公式成立,则使否则,令j+1→j,重复S4,

[0017][0018][0019]

S6:使用以下公式更新后验估计协方差矩阵,令t+1→t,重复S2,

实施本发明实施例,具有如下有益效果:本发明对脉冲式非高斯噪声具有很强的

鲁棒性,并保持了传统卡尔曼滤波算法的状态均值传播过程,而且保留了预测误差协方差的矩阵的传播过程。因此,这种新的滤波器也具有递归结构,适用于在线更新。

[0020]

附图说明

[0021]图1是基于最大协同熵的卡尔曼滤波预测和更新方法的流程示意图。

具体实施方式

[0022]为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。

[0023]对于标准卡尔曼滤波算法,将带有噪声的状态模型和测量模型记为:

[0024]

5

CN 110034746 A[0025]

说 明 书

3/5页

其中,A(k-1)是系统的控制参数,在此为矩阵。H为测量矩阵。卡尔曼滤波模型假设

t时刻的真实状态从(t-1)时刻演化而来。正如在许多实际情况下,动态系统只能得到带有噪声的输入数据。

[0026]假设在时刻t的测量集记为Z={z(t)},卡尔曼滤波算法为如下两个步骤:[0027](1)先验估计表示为

[0028][0029][0030]

P(t|t-1)=A(t-1)P(t-1|t-1)AT(t-1)+Q#(3)

为上一个状态预测的结果,

是上一个状态最优的结

果。P(k|k-1)是

[0031][0032][0033][0034][0035][0036]

对应的协方差。Q是系统过程的协方差。

(2)后验估计为

K(t)=P(t|t-1)HT(t)(H(t)P(t|t-1)HT(t)+R)-1#(4)

Pt=(1-K(t)H(t))P(t|t-1)#(6)K(t)表示卡尔曼增益,

即为后验状态估计,Pt为误差协方差矩阵更新。

由于交通流数据存在非高斯噪声,导致传统的卡尔曼滤波模型性能恶化。为此本

发明实施例提出一种改进的卡尔曼滤波应用到交通流预测上,具体如下实施方案。[0037]对于前面描述的状态模型和线性模型,有:

[0038]

[0039]在这里,

对E[β(t)β(t)T]进行Cholesky分解

(平方根法),得到B(t),符号E表示期望算子。对公式7左乘B-1(t),得到D(t)=W(t)x(t)+e(t),其中

e(t)=B-1(t)β(t)。

基于最大协同熵的代价函数如下:

[0040][0041]

[0042]

[0043]

这里L表示D(t)的维度,di(t)表示D(t)的第i个元素,wi(t)表示W(t)的第i行。ei(t)为e(t)的第i个元素。符号Gσ表示高斯核,σ为高斯核带宽。在最大协同熵准则下,最优化估计如下:

6

CN 110034746 A

说 明 书

4/5页

[0044]

[0045][0046][0047][0048][0049]

具体而言,本实施例主要通过以下步骤进行。(1)选择一个合适的核带宽σ和一个小的正数η,设定初始状态估计

和初始协方差矩阵P(0|0),t=1;

(2)用公式2和公式3获得(3)使j=1,

和P(t|t-1),用Cholesky分解法得到Bp(t|t-1)。其中

表示在第j次定点迭代中的状态

估计。

[0050][0051][0052]

(4)用公式10,公式11计算后验估计

其中

[0053]

[00]其中,表示第t时刻的卡尔曼增益,H表示测量矩阵,z表示测量值,表示测

量噪声的协方差,对E[β(t)βT(t)]进行Cholesky分解(平方根法),得到B,

ξ(t)表示测量噪声,符号E表示期望算子;diag()表示提取对角

元素,Gσ表示高斯核。di(t)是D(t)的第i个元素,wi(t)是W(t)的第i行元素,其中

[0055](5)如果公式12成立,使然后执行(6),否则,令j+1→j,回到

(4)。

[0056][0057]

(6)

(7)用公式13更新后验估计协方差矩阵,令t+1→t,回到(2)。

7

CN 110034746 A[0058]

说 明 书

5/5页

作为先验-后验估计算法,基于最大协同熵的卡尔曼滤波算法的可以总结为预测-更新方程,用如图1所示。

[0060]本发明实施例具有如下有益效果:[0061]1、本发明设计一种基于最大协同熵的卡尔曼滤波算法,这种算法使用最大协同熵准则代替传统的最小二乘误差准则作为最优目标进行推导,因此可以很好地处理脉冲式非高斯噪声的干扰。[0062]2、由于最大协同熵的最优目标准则并不是凸函数,本发明设计了一种新的定点算法更新后验估计。[0063]3、本发明的不仅保持了传统卡尔曼滤波算法的状态均值传播过程,而且保留了预测误差协方差的矩阵的传播过程。因此,这种新的滤波器也具有递归结构,适用于在线更新。

[00]以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

[0059]

8

CN 110034746 A

说 明 书 附 图

1/1页

图1

9

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- niushuan.com 版权所有 赣ICP备2024042780号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务